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1 Introduction

Let A(D1(0)) denote the class of analytic functions in the open unit disk D1(0) = {z ∈ C : |z| <
1}. Let C be the class of all functions f ∈ A(D1(0)) which are normalized by f(0) = 0 and
f ′(0) = 1 and have the form (Maharana et al., 2018; Mehrez, 2019; Oluwayemi & Faisal, 2021;
Ponnusamy et al., 2011; Ponnusamy & Vuorinen, 2001; Prajapat, 2014, 2011; Purohit, 2012;
Vidyasagar, 2020)

f(z) = z +
∞∑
n=2

anz
n, z ∈ D1(0). (1)

Two functions f, g ∈ A(D1(0)) we say that f is subordinated to g in D1(0) and express symbol-
ically f(z) ≺ g(z), if there exists a function ω ∈ A(D1(0)) with |ω(z)| < |z|, z ∈ D1(0) such that
f(z) = g(ω(z)) in D1(0). Furthermore, if function f is univalent in D1(0), then g is subordinate
to f provided g(0) = f(0) and g(D1(0)) ⊂ f(D1(0)). By S we denote the class of all functions
in C which are univalent in D1(0). Let S∗(ε), C(ε), K(ε), S̃∗(ε) and C̃(ε) denote the classes
of starlike, convex, close-to-convex, strongly starlike and strongly convex functions of order ε,
respectively, and are defined as

S∗(ε) =

{
f ∈ C : Re

(
zf ′(z)

f(z)

)
> ε, z ∈ D1(0), 0 ≤ ε < 1

}
,

C(ε) =

{
f ∈ C : Re

((
zf ′(z)

)′
f ′(z)

)
> ε, z ∈ D1(0), 0 ≤ ε < 1

}
,

76



K.V. VIDYASAGAR: CERTAIN GEOMETRIC PROPERTIES OF ℓ-HYPERGEOMETRIC FUNCTION

K(ε) =

{
f ∈ C : Re

(
zf ′(z)

g(z)

)
> ε, z ∈ D1(0), 0 ≤ ε < 1, g ∈ S∗(0) ≡ S∗

}
,

S̃∗(ε) =

{
f ∈ C :

∣∣∣∣arg(zf ′(z)f(z)

)∣∣∣∣ < επ

2
, z ∈ D1(0), 0 ≤ ε < 1

}
,

and

C̃(ε) =
{
f ∈ C :

∣∣∣∣arg(1 + zf ′′(z)

f ′(z)

)∣∣∣∣ < επ

2
, z ∈ D1(0), 0 ≤ ε < 1

}
.

For more details regarding these classes see Duren (1983); Goodman (1983).
For z ∈ C, the ℓ-Hypergeometric function is defined as

H

[
a; z
b; (c : ℓ);

]
=

∞∑
n=0

(a)n
(b)n(c)ℓnn

zn

n!
, (2)

where (γ)n = Γ(γ + n)/Γ(γ), a, ℓ ∈ C with Re(ℓ) ≥ 0 and b, c ∈ C\{0,−1,−2, · · · }. If we put
ℓ = 0 in (2), then ℓ-H function turns to well known confluent hypergeometric function,

H

[
a; z
b; (c : 0);

]
= 1F1

[
a; z
b;

]
. (3)

The ℓ-H function (2) was recently studied in Chudasama & Dev (2016).
We note that ℓ-Hypergeometric function (2) does not belong to the family C. Thus, it is

natural to consider the following normalization of ℓ-H function:

H(a; b; (c, ℓ); z) = zH

[
a; z
b; (c : ℓ);

]
= z +

∞∑
n=2

(a)n−1

(b)n−1(c)
ℓ(n−1)
n−1

zn

(n− 1)!
.

(4)

Motivated by above works, in this paper we study certain geometric properties like κ-uniformly
convexity and κ-starlikeness of ℓ-Hypergeometric function and then we prove Alexander trans-
form of ℓ-Hypergeometric function is starlike. Let κ − UCV and κ − ST be the subclasses of
S consisting of functions which are κ-uniformly convex and κ-starlike, respectively (Kanas &
Wisniowska, 1999, 2000). They are given by,

κ− UCV =

{
f ∈ S : Re

(
1 +

zf ′′(z)

f ′(z)

)
> κ

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ,
z ∈ D1(0), κ ≥ 0

}
,

(5)

κ− ST =

{
f ∈ S : Re

(
zf ′(z)

f(z)

)
> κ

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ ,
z ∈ D1(0), κ ≥ 0

}
.

(6)

The class of all functions p ∈ A(D1(0)) with p(0) = 1 satisfying the condition

Re p(z) > ε, z ∈ D1(0), ε ∈ [0, 1)

be denoted by P(ε). In particular, P(0) = P is the well-known Caratheódory class of functions
with positive real part in D1(0) (Goodman, 1983). The following lemmas are useful in the next
section.
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Lemma 1. (Owa et al., 2002) If f ∈ C satisfies the inequality

|zf ′′(z)| < 1− ε

4
, z ∈ D1(0), ε ∈ [0, 1), (7)

then,

Ref ′(z) > 1 + ε

2
, z ∈ D1(0), ε ∈ [0, 1).

Lemma 2. (Silverman, 1975) Let f ∈ C and ε ∈ [0, 1), then

(i) f ∈ S∗(ε) provided
∞∑
n=2

(n− ε)|an| ≤ 1− ε (8)

(i) f ∈ C(ε) provided
∞∑
n=2

n(n− ε)|an| ≤ 1− ε. (9)

Lemma 3. (Kanas & Wisniowska, 1999, 2000) Let f ∈ C. If for some κ ≥ 0,

∞∑
n=2

n(n− 1)|an| ≤
1

κ+ 2
(10)

and
∞∑
n=2

[n+ κ(n− 1)]|an| ≤ 1, (11)

then f ∈ κ− UCV and f ∈ κ− ST , respectively.

2 Main Results

In the sequence, convexity of order ε, close-to-convexity of order (1 + ε)/2 for normalized
ℓ-Hypergeometric function H(a; b; (c, ℓ); z) are investigated. Certain sufficient conditions for
H(a; b; (c, ℓ); z) to be in the classes P(ε),S∗(ε), C(ε), κ− UCV and κ− ST are also given.

Theorem 1. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1 and c ≥ 1 +
√
3. Then H(a; b; (c, ℓ); z) is

starlike in D1(0) i.e H(a; b; (c, ℓ); ·) ∈ S∗.

Proof. Let p(z) be the function defined by

p(z) =
zH′(a; b; (c, ℓ); z)

H(a; b; (c, ℓ); z)
, z ∈ D1(0).

Since
H(a; b; (c, ℓ); z)

z
̸= 0, the function p is analytic in D1(0) and p(0) = 1. To prove the result,

we need to show that Re(p(z)) > 0. Since c > 1 and ℓ ≥ 1, it follows that (c)n ≤ (c)ℓnn for all
n ∈ N. So, from the hypothesis,∣∣∣∣H′(a; b; (c, ℓ); z)− H(a; b; (c, ℓ); z)

z

∣∣∣∣ =
∣∣∣∣∣
∞∑
n=1

(a)n
(b)n(c)ℓnn

zn

(n− 1)!

∣∣∣∣∣
<

∞∑
n=1

1

(c)n

=
∞∑
n=1

1

c(c+ 1)(c+ 2) · · · (c+ n− 1)

<
1

c

∞∑
n=0

1

(c+ 1)n
=
c+ 1

c2
,

(12)
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and ∣∣∣∣H(a; b; (c, ℓ); z)

z

∣∣∣∣ ≥ 1−

∣∣∣∣∣
∞∑
n=1

(a)n
(b)n(c)ℓnn

zn

n!

∣∣∣∣∣
≥ 1−

∞∑
n=1

1

(c)n

=1−
∞∑
n=1

1

c(c+ 1)(c+ 2) · · · (c+ n− 1)

> 1− 1

c

∞∑
n=0

1

(c+ 1)n
=
c2 − c− 1

c2
.

(13)

From (12) and (13), we have∣∣∣∣zH′(a; b; (c, ℓ); z)

H(a; b; (c, ℓ); z)
− 1

∣∣∣∣ =
∣∣∣∣∣H′(a; b; (c, ℓ); z)− H(a;b;(c,ℓ);z)

z
H(a;b;(c,ℓ);z)

z

∣∣∣∣∣
<

c+ 1

c2 − c− 1
, z ∈ D1(0).

Since c ≥ 1 +
√
3, it follows that c+1

c2−c−1
≤ 1 and hence H(a; b; (c, ℓ); z) is starlike in D1(0).

Theorem 2. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1. For 0 ≤ ε < 1, let

ϱ(ε) =
(2− ε) +

√
5ε2 − 16ε+ 12

2(1− ε)
.

If c ≥ ϱ(ε), then H(a; b; (c, ℓ); z) is starlike function of order ε i.e H(a; b; (c, ℓ); ·) ∈ S∗(ε).

Proof. Following the proof of Theorem 1, H(a; b; (c, ℓ); z) is starlike function of order ε, if
c+ 1

c2 − c− 1
≤ 1− ε. This is true from the hypothesis. This completes the proof.

Theorem 3. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1. For 0 ≤ ε < 1, let

ϑ(ε) =
(8− 3ε) +

√
17ε2 − 68ε+ 76

2(1− ε)
.

If c ≥ ϑ(ε). Then H(a; b; (c, ℓ); z) is convex of order ε i.e H(a; b; (c, ℓ); ·) ∈ C(ε).

Proof. Under the hypothesis, we obtain

∣∣H′(a; b; (c, ℓ); z)
∣∣ ≤ ∣∣∣∣∣1 +

∞∑
n=1

(a)n
(b)n(c)ℓnn

(n+ 1)zn

n!

∣∣∣∣∣
≤ 1 +

∞∑
n=1

n+ 1

(c)n

= 1 +
∞∑
n=1

n

(c)n
+

∞∑
n=1

1

(c)n

≤ 1 +
1

c
+

2

c

∞∑
n=0

1

(c+ 1)n

=
c2 + 3c+ 2

c2
.

(14)
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For the reverse inequality, we have

∣∣H′(a; b; (c, ℓ); z)
∣∣ ≥ 1−

∣∣∣∣∣
∞∑
n=1

(a)n
(b)n(c)ℓnn

(n+ 1)zn

n!

∣∣∣∣∣
≥ 1−

∞∑
n=1

n+ 1

(c)n

= 1−
∞∑
n=1

n

(c)n
−

∞∑
n=1

1

(c)n

≥ 1− 1

c
− 2

c

∞∑
n=0

1

(c+ 1)n

=
c2 − 3c− 2

c2
.

(15)

From (14) and (15), we obtained

c2 − 3c− 2

c2
≤
∣∣H′(a; b; (c, ℓ); z)

∣∣ ≤ c2 + 3c+ 2

c2
, z ∈ D1(0). (16)

From (4), we have

|zH′′(a; b; (c, ℓ); z)| =

∣∣∣∣∣
∞∑
n=1

(a)n
(b)n(c)ℓnn

n(n+ 1)zn

n!

∣∣∣∣∣
≤

∞∑
n=1

n(n+ 1)

(c)n

≤ 4

c
+

1

c

∞∑
n=0

1

(c+ 1)n

=
5c+ 1

c2
.

(17)

Now, from (16) and (17), we get∣∣∣∣zH′′(a; b; (c, ℓ); z)

H′(a; b; (c, ℓ); z)

∣∣∣∣ ≤ 5c+ 1

c2 − 3c− 2
, z ∈ D1(0).

Since c > ϑ(ε), it follows that
5c+ 1

c2 − 3c− 2
≤ 1 − ε. Hence, H(a; b; (c, ℓ); z) is convex of order ε

in D1(0).

If we take ε = 0 in Theorem 3, then we have the following result.

Corollary 1. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1 and c ≥ 4 +
√
19. Then H(a; b; (c, ℓ); ·) ∈ C.

Theorem 4. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1. For 0 ≤ ε < 1, let

ρ(ε) =
10 + 2

√
26− ε

1− ε
.

If c ≥ ρ(ε). Then H(a; b; (c, ℓ); z) is close-to-convex of order
1 + ε

2
i.e H(a; b; (c, ℓ); ·) ∈ K

(
1 + ε

2

)
.

Proof. Using (17) and Lemma 1, we have

|zH′′(a; b; (c, ℓ); z)| ≤ 5c+ 1

c2
, z ∈ D1(0).
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Since c ≥ ρ(ε), it follows that
5c+ 1

c2
≤ 1− ε

4
. this proves that Re(H′(a; b; (c, ℓ); z)) >

1 + ε

2

and hence H(a; b; (c, ℓ); ·) ∈ K
(
1 + ε

2

)
.

If we take ε = 0 in Theorem 4, then we have the following result.

Corollary 2. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1 and c ≥ 10 + 2
√
26. Then H(a; b; (c, ℓ); z) is

close-to-convex of order
1

2
i.e H(a; b; (c, ℓ); ·) ∈ K

(
1

2

)
.

Theorem 5. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1. For 0 ≤ ε < 1, let

ψ(ε) =
1 +

√
5− 4ε

2(1− ε)
.

If c ≥ ψ(ε). Then
H(a; b; (c, ℓ); z)

z
∈ P(ε).

Proof. Let p(z) be the function defined by

p(z) =
H(a; b; (c, ℓ); z)/z − ε

(1− ε)
.

The function p(z) is analytic in D1(0) and p(0) = 1. To prove the result, we have to show that
|p(z)− 1| < 1. If z ∈ D1(0), then

|p(z)− 1| =

∣∣∣∣∣ 1

1− ε

∞∑
n=1

(a)n
(b)n(c)ℓnn

zn

n!

∣∣∣∣∣
≤ 1

1− ε

∞∑
n=1

1

(c)n

=
1

1− ε

∞∑
n=1

1

c(c+ 1)(c+ 2) · · · (c+ n− 1)

≤ 1

1− ε

1

c

∞∑
n=0

1

(c+ 1)n
=

c+ 1

c2(1− ε)
.

Since c ≥ ψ(ε), it follows that
c+ 1

c2(1− ε)
≤ 1. Hence,

H(a; b; (c, ℓ); z)

z
∈ P(ε).

If we take ε = 0 in Theorem 5, then we have the following result.

Corollary 3. If a, b, c, ℓ ∈ R with 0 < a < b, ℓ ≥ 1 and c ≥ 1 +
√
5

2
. Then

H(a; b; (c, ℓ); z)

z
∈ P.

Theorem 6. If a, b, c, ℓ ∈ R with 0 < a < b, c ≥ 1 and ℓ ≥ 1. For 0 ≤ ε < 1,

H′(a; b; (c, ℓ); 1)− εH(a; b; (c, ℓ); 1) ≤ 2(1− ε).

Then H(a; b; (c, ℓ); z) ∈ S∗(ε).

Proof. From (4), we haveH(a; b; (c, ℓ); z) = z+
∞∑
n=2

An−1z
n, whereAn−1 =

(a)n−1

(n− 1)!(b)n−1(c)
ℓ(n−1)
n−1

.

Then from the hypothesis, we have

∞∑
n=2

(n− ε) |An−1| =
∞∑
n=2

nAn−1 − ε

∞∑
n=2

An−1

= (H′(a; b; (c, ℓ); z)− 1)− ε(H(a; b; (c, ℓ); z)− 1)

= H′(a; b; (c, ℓ); z)− εH(a; b; (c, ℓ); z)− 1 + ε

≤ 1− ε.
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Hence form Lemma 2, H(a; b; (c, ℓ); z) is a starlike of order ε.

Theorem 7. If a, b, c, ℓ ∈ R with 0 < a < b, c ≥ 1 and ℓ ≥ 1. For 0 ≤ ε < 1,

H′′(a; b; (c, ℓ); 1) + (1− ε)H′(a; b; (c, ℓ); 1) ≤ 2(1− ε).

Then H(a; b; (c, ℓ); z) ∈ C(ε).

Proof. From (4), we haveH(a; b; (c, ℓ); z) = z+

∞∑
n=2

An−1z
n, whereAn−1 =

(a)n−1

(n− 1)!(b)n−1(c)
ℓ(n−1)
n−1

.

Then from the hypothesis, we have
∞∑
n=2

n(n− ε) |An−1| =
∞∑
n=2

n(n− 1)An−1 + (1− ε)
∞∑
n=2

An−1

= H′′(a; b; (c, ℓ); 1) + (1− ε)(H′(a; b; (c, ℓ); 1)− 1)

= H′′(a; b; (c, ℓ); 1) + (1− ε)H′(a; b; (c, ℓ); 1)− (1− ε)

≤ 1− ε.

Hence form Lemma 2, H(a; b; (c, ℓ); z) is a convex of order ε.

Theorem 8. If a, b, c, ℓ ∈ R with 0 < a < b, c ≥ 1, ℓ ≥ 1 and κ ≥ 0. Then the sufficient
condition for H(a; b; (c, ℓ); z) to be in κ− ST is

H′(a; b; (c, ℓ); 1)− κ

κ+ 1
H(a; b; (c, ℓ); 1) ≤ 2

κ+ 1
.

Proof. From (4), we haveH(a; b; (c, ℓ); z) = z+
∞∑
n=2

An−1z
n, whereAn−1 =

(a)n−1

(n− 1)!(b)n−1(c)
ℓ(n−1)
n−1

.

Then from the hypothesis, we have
∞∑
n=2

[n+ κ(n− 1)] |An−1| = (1 + κ)

∞∑
n=2

nAn−1 − κ

∞∑
n=2

An−1

= (1 + κ)(H′(a; b; (c, ℓ); z)− 1)

− κ(H(a; b; (c, ℓ); z)− 1)

= (1 + κ)H′(a; b; (c, ℓ); z)

− κH(a; b; (c, ℓ); z)− 1

≤ 1.

Hence form Lemma 3, H(a; b; (c, ℓ); z) ∈ κ− ST .

Theorem 9. If a, b, c, ℓ ∈ R with 0 < a < b, c ≥ 1, ℓ ≥ 1 and κ ≥ 0. Then the sufficient
condition for H(a; b; (c, ℓ); z) to be in κ− UCV is

H′′(a; b; (c, ℓ); 1) ≤ 1

κ+ 2
.

Proof. From (4), we haveH(a; b; (c, ℓ); z) = z+

∞∑
n=2

An−1z
n, whereAn−1 =

(a)n−1

(n− 1)!(b)n−1(c)
ℓ(n−1)
n−1

.

Then from the hypothesis, we have
∞∑
n=2

n(n− 1) |An−1| =
∞∑
n=2

n(n− 1)An−1

= H′′(a; b; (c, ℓ); 1)

≤ 1

κ+ 2
.

Hence form Lemma 3, H(a; b; (c, ℓ); z) ∈ κ− UCV.
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For a function f ∈ C given by (1), the Alexander transform A(f) : D1(0) → C is defined by
(see Alexander (2015))

A(f)z =

∫ z

0

f(w)

w
dw = z +

∞∑
n=2

an
n
zn.

Theorem 10. If a, b, c, ℓ ∈ R with 0 < a < b, c ≥ 1 and ℓ ≥ 1. Then the sufficient condition for
A(H(a; b; (c, ℓ); z)) to be in the class S∗ is H(a; b; (c, ℓ); 1) ≤ 2.

Proof. From (4), we have

H(a; b; (c, ℓ); z)

z
= 1 +

∞∑
n=2

(a)n−1

(b)n−1(c)
ℓ(n−1)
n−1

zn−1

(n− 1)!
= 1 +

∞∑
n=2

An−1z
n−1,

where

An−1 =
(a)n−1

(b)n−1(c)
ℓ(n−1)
n−1 (n− 1)!

.

Thus,

A(H(a; b; (c, ℓ); z)) =

∫ z

0

H(a; b; (c, ℓ);w)

w
dw

= z +

∞∑
n=2

An−1
zn

n
=

∞∑
n=1

an−1z
n,

where a1 = 1, an =
An−1

n
, n ≥ 2. From Lemma 2, we have A(H(a; b; (c, ℓ); z)) ∈ S∗(0) = S∗ if,

∞∑
n=2

n|an| ≤ 1.

That is
∞∑
n=2

n|an| =
∞∑
n=2

n
An−1

n

=

∞∑
n=2

(a)n−1

(b)n−1(c)
ℓ(n−1)
n−1 (n− 1)!

= H(a; b; (c, ℓ); 1)− 1 ≤ 1.

Which is true, since H(a; b; (c, ℓ); 1) ≤ 2. This completes the proof.
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